Rejoinder to 'multivariate functional outlier detection'

نویسندگان

  • Mia Hubert
  • Peter Rousseeuw
  • Pieter Segaert
چکیده

First of all we would like to thank the editor, Professor Andrea Cerioli, for inviting us to submit our work and for requesting comments from some esteemed colleagues. We were surprised by the number of invited comments and grateful to their contributing authors, all of whom raised important points and/or offered valuable suggestions. We are happy for the opportunity to rejoin the discussion. Rather than addressing the comments in turn we will organize our rejoinder by topic, starting with comments directly related to concepts we proposed in the paper and continuing with some extensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

Discussion of "multivariate functional outlier detection" by M. Hubert, P. Rousseeuw and P. Segaert

I would like to congratulate M. Hubert, P. Rousseeuw and P. Segaert for this stimulating and useful work on outlier detection methods for multivariate functional data. They define and classify rigorously different types of functional outliers and propose several techniques for detecting them in multivariate functional data. These authors use the notion of data depth and distances derived from t...

متن کامل

Total Variation Depth for Functional Data

There has been extensive work on data depth-based methods for robust multivariate data analysis. Recent developments have moved to infinite-dimensional objects such as functional data. In this work, we propose a new notion of depth, the total variation depth, for functional data. As a measure of depth, its properties are studied theoretically, and the associated outlier detection performance is...

متن کامل

Influence Ranking Based on Tilting with Application to Climate Data

The tilting method ranks each observation in terms of its influence on a general statistic, which can be mean, covariance, etc. This approach is based on ‘tilting’ or re-weighting each data value to achieve a given small change of the statistic, while minimizing the total amount of tilt. Then the influence ranking for each data corresponds to the rank of the tilted data weights. The tilting met...

متن کامل

Outlier Detection Methods in Multivariate Regression Models

Outlier detection statistics based on two models, the case-deletion model and the mean-shift model, are developed in the context of a multivariate linear regression model. These are generalizations of the univariate Cook’s distance and other diagnostic statistics. Approximate distributions of the proposed statistics are also obtained to get suitable cutoff points for significance tests. In addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistical Methods and Applications

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2015